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Abstract
Calreticulin (CRT) is a cytoplasmic calcium-binding protein. The aim of this study was to investigate
CRT presence in cancer with the use of fluorescent gold nanoclusters (AuNCs) and to explore AuNC
synthesis using mercaptosuccinic acid (MSA) as a coating agent. MSA-coated AuNCs conferred
well-dispersed, bio-stable, water-soluble nanoparticles with bioconjugation capacity and 800–850 nm
fluorescence after broad-band excitation. Cell-viability assay revealed good AuNC tolerability. A
native CRT amino-terminus corresponding peptide sequence was synthesised and used to generate
rabbit site-specific antibodies. Target specificity was demonstrated with antibody blocking in
colorectal and breast cancer cell models; human umbilical vein endothelial cells served as controls.
We demonstrated a novel route of AuNC/MSA manufacture and CRT presence on colonic and
breast cancerous cell surface. AuNCs served as fluorescent bio-probes specifically recognising
surface-bound CRT. These results are promising in terms of AuNC application in cancer theranostics
and CRT use as surface biomarker in human cancer.

Keywords: gold nanoclusters, quantum nanoparticles, calreticulin, theranostics, cancer
biomarkers

(Some figures may appear in colour only in the online journal)

Abbreviations

AuNCs Gold nanoclusters

AuNC/MSA Gold nanoclusters with mercaptosuccinic acid
coating

CRT Calreticulin

ECL Enhanced chemiluminescence

HT-29 Colorectal cancer cell lines

HUVEC Endothelial cell lines

QDs Quantum dots

MCF-7 Breast cancer cell lines

MSA Mercaptosuccinic acid

NCs Nanoclusters

NIR Near infrared

PBS Phosphate buffer solution

TEM Transmission electron microscopy

Background

Most tumours are only detectable when they attain a certain
size; often, by the time of diagnosis they have already metas-
tasised, thus impacting tumour resectability and outcome. This
underlines the necessity for early cancer detection. To date,
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standard diagnostic techniques such as cross-sectional imaging,
tissue biopsy, biochemical investigations and immunoassays
often lack sufficient specificity and sensitivity to detect
malignancy at an early stage. An inspired approach to these
shortcomings is the incorporation of colloidal semi-conductor-
based fluorescent quantum nanoclusters (NCs). These nano-
particles may function as multimodal agents, allowing for rapid
and highly sensitive biomarker detection and screening.

The use of ultra-sensitive fluorescence imaging techni-
ques for biomolecular characterisation in the subcellular
milieu has recently been a subject of interest [1]. These
techniques rely on the efficiency of bio-unstable and some-
times highly toxic fluorescent labelling agents coupled to
proteins, DNA or other biomolecules [2, 3]. These short-
comings have triggered research for discovery of more bio-
stable fluorophores which could be deployable as probes for
advanced in vivo theranostics, with particular focus on
emission in the near infrared (NIR) range [4], to allow for
maximum tissue penetration.

Noble metal-based, quantum-confined nanoclusters,
composed of small number of Au or Ag atoms possess rea-
sonably intense, size-dependent fluorescence [5]-and are
significantly smaller than quantum dots (QDs). Furthermore,
gold QD-based nanoparticles have been assessed as negli-
gibly low in toxicity in biological systems at optimal con-
centration used [6]. There are several routes to the synthesis
of gold nanoclusters (AuNCs) or QDs, including the widely
used etching-based method, whereby small clusters are
derived from large gold nanoparticles by thiols [7], biomo-
lecules [8] or multivalent polymers [9]. Thiols have been
popular both as stabilisers and coatings and a large number,
such as tiopronin [10], phenylethylthiolate [11], thiolate α-
cyclodextrin [12, 13], mercaptopropionic acid [14, 15],
bidentate dihydrolipoic [16], dodecanthiol [17], and
D-penicillamine [18–20] have been used to stabilise AuNCs.
Although this technique allows for efficient production of
AuNCs or QDs with multicolour fluorescence, it entails
careful manipulations and long processing times.

Conjugation of NCs to antibodies against biomarkers
provides targeting capabilities. One such candidate is
calreticulin (CRT). CRT is a multifunctional, calcium-
binding protein, predominantly residing in the endoplasmic
reticulum. The protein normally acts as quality control
chaperone by preventing misfolded proteins from proceed-
ing to the Golgi apparatus [21]. CRT also acts as Ca2+

storage protein, thus playing a central role in the intracellular
signal transduction systems and therefore in functions such
as cellular proliferation and apoptosis1. It also appears to
act as a nuclear hormone receptor gene transcription mod-
ulator [22, 23].

CRT expression has been correlated with various cancers
[24]. Due to its capacity of Ca2+ storage, CRT quite possibly
becomes engaged to tumorigenic milestones such as migra-
tion, invasiveness and immortalisation [25]. It has recently
been reported that CRT over-expression contributes to the

development and progression of pancreatic cancer [26], as
well as gastric, oesophageal and ductal breast cancer, where it
has been positively correlated with poorer prognosis [27, 28].
Perhaps to make things more perplexed, it has been supported
that it plays a pivotal role in malignant cells’ engulfment [29]
and facilitates increased cancer immunogenicity [30]. Con-
ventional anticancer drugs, such as anthracyclines, induce
CRT translocation to the cell surface. This translocation
potentially acts as an immune system leverage during che-
motherapy [31]. Finally, it was recently reported that CRT is
the dominant pro-phagocytic signal on multiple human can-
cers, such as acute myeloid leukaemia, non-Hodgkin’s lym-
phoma, bladder, ovarian cancer and glioblastomas, and its
action is counterbalanced by CD47 [32]. The above multi-
faceted attributes make CRT a potential biomarker with
promising diagnosing, tumour grading and therapeutic
potential.

In this study we embarked on the development of a
simple one-pot synthesis of ultra-small photo-luminescent
AuNCs with NIR emission in an aqueous solution. This was
achieved with slow reduction using specified amount of DMF
and stabilising with the thiol derivative mercaptosuccinic acid
(MSA) as a functional coating to facilitate conjugation to
biomolecules. For the purpose of targeting and localisation for
bio-imaging studies, an anti-CRT antibody was raised and
conjugated within the desirable physiological pH range
obtained with MSA. We also aimed to investigate the
detectability of CRT on the surface of cancer cells and to
further explore cancer cells’ targeting with fluorescent anti-
CRT AuNCs.

Methods

Reagents

All chemicals were of analytical grade. MSA, gold (III)
chloride trihydrate (HAuCl4.3H2O), Dimethylformamide
(DMF) and N-(3-dimethylaminopropyl)-N-ethylcarbodiimide
hydrochloride (EDC) were purchased from Sigma-Aldrich
(UK). In all preparations high purity deionised water from a
Millipore system was used.

Production and purification of anti-calreticulin peptide IgG
antibodies

To generate anti-sera to human CRT protein, a synthetic pep-
tide of 15 amino acid (NH2-Met-Leu-Leu-Ser-Val-Pro-Leu-
Leu-Gly-Leu-Ala-Val-Ala-Pro-Ala-NH2) corresponding to the
amino terminus of this protein was chemically synthesised
using the Fmoc solid phase strategy. The peptide was con-
jugated to keyhole limpet haemocyanin (KLH) using glu-
taldehyde. The KLH conjugated peptide was injected into New
Zealand white rabbits (1mg/rabbit) (Intra muscular, IM) for
polyclonal antibody production. The IgG components were
isolated from the rabbit serum using 50% saturated ammonium
sulphate solution and concentrated using 100 KDa cut off
centricon centrifuge tubes. Antibody specificity to the peptide

1 Second messenger systems at the US national library of medicine medical
subject headings (mesh).
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antigen was established by routine enzyme-linked immuno-
sorbent assay and western blots of cell homogenates (data not
shown). The resultant anti-CRT was used for QD conjugation
experiments and for all subsequent in vitro localisation and
detection studies.

Synthesis of MSA-stabilised gold nanoclusters (AuNC/MSA)

The method used in this study involved a modification of
earlier methods to obtain visible fluorescent gold QDs [33].
All glassware used in this preparation were cleaned in freshly
prepared aqua regia (HCl: HNO3, 3: 1 v/v) and rinsed
stringently (x3) in water prior to preparation. Instead of using
neat organic solvent, purified de-ionised water (pH 6.5) was
used as the major solvent. The precursor solution was pre-
pared with a mixture of MSA (50 mM) and HAuCl4 (25 mM)
in 50 ml of water. After vigorous stirring of the precursor
mixture for 5 min, using a homogenizer at maximum speed,
500 μl (12.9M) of the polar aprotic solvent, DMF
(73.09 g mol−1), was added to the mixing precursor solution
for another 5 min at room temperature. This mixture was then
processed by hydrothermal treatment (autoclave) at 121 °C
for 25 min to produce quantum confined MSA–AuNCs with
NIR emission at �800 nm on cooling to room temperature.

This method is novel in that others have used neat DMF
with long heating times with multiple steps to produce
nanoclusters not necessarily emitting in the infra-red region.

AuNC characterisation

The fluorescence spectra of AuNCs, either native or with
chemical modifications, were mapped to check that the NC
fluorescence was not quenched; in order to use them for
different biomedical applications, spectra were taken by a
spectrofluorometer (Ocean Optics, USB 2000+) with an
excitation source at 375 or 630 nm. The quantum yield (QY)
at 375 nm excitation of MSA–AuNCs in aqueous solution at
room temperature was determined using the comparative
method which relies on the use of fluorescence standards with
known QY of rhodamine 6G (0.95 in ethanol) [34]. The QY
of MSA–AuNCs was estimated to be 0.6 using rhodamine 6G
as a standard.

Transmission electron microscopy (TEM) (Phillips CM
120) was used for visualisation and to obtain the size of
AuNCs. To determine the size and shape of the MSA-coated
NCs, a set of 1:100 serial dilutions were made of MSA-coated
NC with PBS and the optimum dilution was chosen. A drop
of the samples was mounted on to a Piloform (TAAB) coated
G300HS copper electron microscopy grid (Gilder) and
allowed to air dry. The grids were examined with a CM120
(Philips) TEM at 3.0×105 magnification.

Cell culture

All cell cultures were routinely maintained in standard growth
conditions (37 °C, 5% CO2). The cancer cell lines MCF-7
(breast adenocarcinoma, ECACC, Sigma Aldrich) and HT29
(colorectal adenocarcinoma, ECACC) were maintained in
D-MEM containing 1 mM pyruvate, 2 mM glutamine and

10 mM HEPES. supplemented with 10% foetal bovine serum
(FBS) and 100 IU penicillin and 100 μg ml−1 streptomycin,
human umbilical vein endothelial cells (HUVECS) were
maintained in PromoCell endothelial cell growth medium
with supplement mix (PromoCell GmbH) 5% FBS supple-
mented with growth factors. Cells were routinely passaged
(trypsin) and for further stocks or plated into multiwell plates
(Corning USA) for the investigations below.

Cell viability assay

The viability of cells treated with AuNCs and appropriate
controls was measured with the alamar blue (AB) metabolic
assay. Cells (1×104/well) were plated into 96 well plates
and after 48 h growth the medium was removed and replaced
with different concentrations of coated and precursor AuNCs
or constituent compounds. The selected concentrations of
coated and precursor AuNC were as following; 0, 50, 100,
150, 200 μg ml−1 were added in replicates of 12 wells in a 96-
well plate. The incubated cells were monitored over the time
course of 48 h.

After 24 h incubation, 20 μl of AB solution (10 X) were
added to medium in each well and incubated for another 4 h.
The viability indicator, which uses the natural reducing power
of living cells to convert resazurin to the absorbing molecule
resorufin, was adopted to assess toxicity. The amount of
absorbance was proportional to the number of metabolically
active viable cells. Absorbance read as optical density was
measured (excitation 530; emission 620) with 600 nm as a
reference wavelength, using a 96–well plate reader (Helena
Biosciences, Sunderland, UK) in a Multiscan MS UV–visible
spectrophotometer (Labsystems, Ashford, UK).

Preparation of anti-calreticulin conjugation to AuNC/MSA (anti-
CRT–AuNCs)

Fluorescent AuNC/MSA solution was diluted with equal
volume of cold ethanol and centrifuged at 10 000 g for
approximately 30 min. The precipitated AuNC/MSA was
vacuum dried to be obtained as a powder. The precipitated
dried AuNC/MSA (approximately 1 mg) was re-suspended in
1 ml phosphate buffer saline. The obtained coated AuNC/
MSA (1 ml) solution was conjugated to the anti-CRT using
EDC as an acylating agent. Briefly, 200 μl of AuNC/MSA
solution (1 mg ml−1) was mixed with 200 μl EDC
(1 mg ml−1) in PBS for 30 min at room temperature. 100 μl of
anti-CRT solution (5 mgml−1) was added to the activated
mixture and agitated gently for 2 h at room temperature.

To separate the reagent and unconjugated AuNC/MSA,
membrane centrifugal columns (centricon) with a cut off of
100 kDa were centrifuged at 5000 g with UV monitoring at
280 nm of the retained samples. Immuno-chemiluminescence
detection was carried to further validate conjugation of the
AuNC-anti-CRT via dot blot [35]. There were no changes in
fluorescence intensity or shift in spectra position despite
modification.

To determine the number of antibodies per nanocluster,
calculation was carried out based on the method applied to
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equivalent bioconjugated QDs. Accordingly we obtained
∼0.5 IgG molecules per AuNC for a 1:2 IgG/AuNC molar
ratio. The purified bio-conjugated nanoclusters defined as
anti-CRT–AuNCs conjugated to anti-CRT were collected and
stored at +4 °C until further use.

Cell incubation with anti-CRT–AuNC and anti-CRT

Two different cancer cell lines were used; HT-29 (colon) and
MCF-7 (breast). Endothelial primary cells (HUVECs) were
used as non-malignant cell controls. To study the targeting
and imaging of the conjugated anti-CRT–AuNC, cells were
grown routinely in 24 well plates. After 36 h of incubation
(70% confluence), the cells were rinsed with sterile PBS and
1 ml of the corresponding fresh media with 5% FB with anti-
CRT–AuNC at 1:500 titre to the plates. Cells incubated with
unconjugated AuNCs were also incubated with the cells
and served as controls. Anti-CRT antibodies were also pre-
incubated with cells to validate the specificity by blocking the
presence of any CRT on the cell surface. All cells were
incubated for 1 h at 37 °C in a humidified 5% CO2 atmos-
phere. After 1 h the cells were washed with PBS (pH 7.4) and
fixed with 4% paraformaldehyde for 30 min at room temp-
erature. After washing three times with PBS the plates were
directly imaged under confocal laser scanning microscope.

Cell imaging with confocal microscopy

Images were acquired by fluorescent microscopy (Nikon
Eclipse TE 300). The PCM scanning head was mounted on an
inverted optical microscope (Nikon Eclipse TE 300), which
can operate in fluorescence, reflection and phase contrast
modes, and it was provided with Plan Fluor dry objective
(20×/NA=0.5). He–Ne laser (488 nm) and 543 nm are the

sources, housed in a common module, providing the excita-
tion beams that are delivered to the scanning head through a
single-mode optical fibre. Photomultiplier (PMT) tubes are
placed within the control unit, and the collected light trans-
ported via high-transmission optical fibres. This greatly
minimises the electronic noise at the PMT output. Images
were collected with excitation at 488 nm laser, with 630 nm
LP (long pass) emission filter for the NIR emitting antiCRT–
AuNC positive samples (red pseudocolour).

Results

Synthesis of AuNCs

Fluorescent AuNCs were prepared in one pot technique by
reducing gold salt with minimum amount of DMF in the pre-
sence of MSA introducing sequentially, starting with MSA and
then DMF in aqueous solution with vigorous mixing. A light
brown colour of the solution suggests formation of
ultra-small non-fluorescent NCs. Subjecting the mixture to
hydrothermal heating at 121 °C for 25 min and cooling pro-
duced NIR-emitting NCs. Of significant importance is the non-
appearance of fluorescence prior to the heating
suggesting that luminescence originates from high temperature
slow reduction by DMF of the AuNCs capped with MSA.

A prominent fluorescent emission peak was observed at
800 nm in the NIR region in aqueous solution upon excitation
at 375 and 630 nm (figure 1). TEM of MSA–AuNCs indi-
cated an average core diameter of 2 nm (figure 2), the
hydrodynamic diameter assessed by dynamic light scattering
was 3.5 nm. The ultra-small nanoparticle size in aqueous
solution well below 5 nm imparts AuNCs as suitable fluor-
escence probes for bio-conjugating and high resolution

Figure 1. Absorption and emission profiles of MSA–AuNCs. The MSA–AuNCs are characterised by broad absorption spectrum (solid line)
and emission profiles at 800 nm, excited at 375 nm (dashed line) and 630 nm (dotted line).
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imaging [36]. Further observation over 1 year of storage in
sterile buffer solution demonstrated no precipitations or
optical deterioration. These properties are appealing if com-
pared to other non-metal fluorophores and make these nano-
particles compatible for biological applications.

Toxicity of AuNCs and their precursor salts in cancer and non-
cancer cells

To examine possible toxic effects, cancerous and non-
cancerous cells were treated with MSA-coated AuNCs and

the precursor free salt (HAuCl4) for 24 h (figures 3–5). As
shown graphically, AuNCs dose-dependently decreased the
cell viability, illustrated as a gradual decline in metabolic
conversion in the presence of 0–200 μg ml−1 AuNCs. Sig-
nificant cell death in the case of HUVECs was observed with
MSA-coated AuNCs at concentrations of 50 μg ml−1 and
above. Cancer cells seem to be robust and managed to cope at
higher doses than HUVECs. However, with precursor salts
there was a dramatic steep decline in viability, especially in
the non-cancerous HUVECs (figure 3) as compared to the
cancrous cells (HT29, MCF7; figures 4 and 5). Generally, cell

Figure 2. TEM image of dispersed AuNCs showing average diameter.

Figure 3. The effect of AuNCs and HAuCl4 (free precursor salt) on cell viability of human umbilical vein endothelial cells (HUVECs). Cells
were treated with various concentrations of NCs and free salt for 24 h. Cell viability taken as equivalent to metabolic activity was measured
by alamar blue absorbance assay (±SD; n=4; p<0.05 compared with control).
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viability levels at the maximum salt doses used were <20%
for HUVECs but >50% for cancer cells.

Fluorescence imaging of anti-CRT–AuNCs in cancer and non-
cancer cells

Utilisation of AuNCs as an efficient targeted contrast agent
for in vitro or in vivo imaging necessitates further modifica-
tion by conjugating with specific bio-recognition molecules.
We selected antibodies targeted to a short peptide corresp-
onding to the amino terminus of human CRT. This protein

has been primarily located on most cancer cells and is a
suitable bio-conjugate to AuNCs. Water-soluble AuNCs were
conjugated to anti-CRT using water-soluble EDC method [37,
38]. The anti-CRT–AuNC conjugates were delivered to live
cells by incubating for 1 h and fixed with 4% paraformalde-
hyde in PBS. Figure 6 shows confocal images of cells with
strong fluorescence localised to the surface of HT29 and
MCF7 cancer cells incubated with anti-CRT AuNCs, com-
pared to cells incubated with untargeted AuNCs (figures 6(A)
versus (B); (D) versus (E)). In order to further validate CRT
localisation on the extracellular membrane of cells, incubation

Figure 4. The effect of AuNCs and HAuCl4 (free precursor salt) on cell viability of MCF-7 breast cancer cells treated with various
concentrations of NCs and free salt for 24 h. Cell viability taken as equivalent to metabolic activiy was measured by alamar blue absorbance
assay (±SD; n=4; p<0.05 compared with control).

Figure 5. The effect of AuNCs and HAuCl4 (free precursor salt) on cell viability of HT-29 colorectal cancer cells treated with various
concentrations of NCs and free salt for 24 h. Cell viability taken as equivalent to metabolic activiy was measured by alamar blue absorbance
assay (±SD; n=4; p<0.05 compared with control).
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was also performed on control non-cancer cells, HUVECs,
which showed minimal/no fluorescence (figure 6(G)). To
further validate specificity, antibody blocking was carried out
on cancerous cells. HT29 and MCF7 cancer cells which were

pre-incubated with anti-CRT antibody (prior to exposure to
targeted AUNCs) showed considerably less fluorescent signal
indicating competitive inhibition of anti-CRT AuNC binding
(figures 6(A) versus (C); (D) versus (F)).

Figure 6. Confocal microscopic analysis of cells incubated with AuNCs. Cells were grown in 24-well plates and incubated for 1 h with
unconjugated AuNCs or anti-CRT–AuNC (conjugated to anti-CRT antibody), with or without pre-incubation with anti-CRT Ab to
demonstrate competitive inhibition. (A) Anti-CRT–AuNC binding to HT-29 colorectal cancer cells. (B) Unconjugated AuNC binding to HT-
29 cells. (C), (B) anti-CRT–AuNC binding to HT-29 colorectal cancer cells which were pre-incubated by anti-CRT Ab. (D) Anti-CRT–
AuNC binding to MCF-7 breast cancer cells. (E) Unconjugated AuNC binding to MCF-7 cells. (F) Anti-CRT–AuNC binding to MCF-7
breast cancer cells which were pre-incubated with anti-CRT Ab. (G) Anti-CRT–AuNC binding to HUVECs (serving as non-cancer control
cells). For the triple-image groups (A)–(G): top channels show the transmission images, middle channels show fluorescence and bottom
channels are the merged images of the two. (A*) (HT29 colorectal cancer) and (D*) (MCF7 breast cancer) are magnifications or the
equivalent merged images. NIR emitting AuNCs were imaged using 488 nm laser excitation with 630 nm LP emission filter (red
pseudocolour).
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Discussion

In this study we embarked on the development of a simple
one-pot synthesis of ultra-small photoluminescent AuNCs
with NIR emission in an aqueous solution, with the view to
use them for biomarker targeting; and chose CRT as the
exemplar target molecule.

NIR emitting AuNCs (800 nm) can be prepared in a one
step by reducing gold salt with DMF in the presence of MSA
in aqueous environment. Control mixtures without MSA or
DMF resulted in no observable emission, indicating that
quantum confinement can only be obtained in the presence of
DMF and MSA on hydrothermal processing. DMF was one
of the standard organic compounds used as a solvent for
various processes, including the preparation of colloids [39]
containing metals in their composition. We demonstrated the
ability of DMF to reduce Au+ ions at high temperature in the
presence of MSA, with formation of dispersions of AuNCs
being assembled in a short time. Our goal was to modify the
gold salts with MSA. The latter was selected as a capping
ligand as, from its molecular structure (pKCOOH=are 3.30
and 4.94), it was expected to possess combined properties of
both mercaptopropionic acid (MPA, pKCOOH=4.32) and
thioglycolic acid (TGA, pKCOOH=3.53. It is known that
MPA and TGA can only stabilise efficiently semiconductor
based nanocrystals in alkaline aqueous solution [40], whereas
MSA can stabilise in weak acidic solution within the desirable
physiological pH range. As a normal thiol derivative, che-
mical adsorption to the nanoparticle surface through Au–S
bonding is anticipated. Similar to MPA and TGA, MSA has
dissociable carboxylic groups which enable its electrostatic
interaction to maintain stability. Finally, since it is soluble,
further surface modifications can be facilitated in aqueous
phase without the risk of irreversible precipitation by biolo-
gical ligands. Our resultant MSA-coated NCs were within the
expected nano-range size. Interestingly, the MSA-AuNCs
exhibit a distinct absorption peak at 620 nm, which may arise
from electronic transition between the shell and the gold
cluster core.

Nano-materials with fluorescent emission on excitation
have been developed by many groups for biological labelling
and imaging. However, compared with visible fluorescence
emitting nano-materials, those with NIR emission (650–900 nm)
have superior advantages in biological imaging due to relatively
maximum transparency and minimum auto-fluorescence in liv-
ing tissues [41, 42]. To date various kinds of semi-conductor
based NIR emitting nanomaterials, such as QDs, have been
synthesised such as mercury sulphide (HgS), cadmium/mer-
cury/tellurium (CdHgTe), cadmium phosphide (Cd3P2) and
cadmium/lead/sulphide (CdPbS) [43, 44], with unresolved
concerns about potential toxicity. Very recently, the manufacture
of NIR-emitting nano-material hybrids containing gold and sil-
ver NCs have been reported for biological applications [45, 46].

To examine toxicity, colorectal HT29 and breast MCF7
cancer cells and HUVECs were treated with MSA-coated
AuNCs and its precursor free salt for 24 h; HUVECs were used
as a non-cancerous cell control. Generally, AuNCs were only
toxic at high concentrations, compared to the free salt precursors;

and cancer cells were much more resilient than endothelial cells.
In the latter case, the tolerance of cancer cells may be due to
altered redox functionalities. Furthermore, the possibility of
intracellular reactive oxygen species levels’ elevation and sub-
sequent mitochondrial dysfunction by the gold salts might be at
play here. This necessitates further verification in future studies.
Besides maintaining cellular metabolism, mitochondria have also
been shown in studies to perform important functions in the
signal transduction for apoptosis. HUVECS being of vascular
origin, very little is known of nanoparticles or QDs effect on
endothelial function when they penetrate vasculature through
injection as delivery or imaging agents. Generally, recent reports
of AuNCs tested in vitro, for example in dendritic cells, have not
reported noticeable toxicity levels [46].

Having manufactured AuNCs, our second aim was to use
them to target CRT to determine its usefulness as a cancer
biomarker. This molecule is a multifunctional, calcium-
binding protein, usually found the endoplasmic reticulum,
which aids correct protein folding. We aimed to demonstrate
the presence of CRT predominantly on the membrane surface
of cancer cells. We further aspired to demonstrate on in vitro
confocal microscopy that cancer cells can be targeted with
fluorescent anti-CRT gold NCs; and to develop in the future
concomitant photothermal effect in the presence of iron oxide
magnetic nanoparticles as a potential therapy.

Although induced CRT translocation to the cancer cell
surface has already been demonstrated, we discovered that
CRT is expressed on the surface of tumour-derived cells of
the solid cancers investigated, in the absence of any form of
induction. In normal cells, CRT functions as a calcium-
binding protein, predominantly present in the endoplasmic
reticulum, where it acts as a chaperone, promoting protein
folding. The results from our present study indicate that CRT
is present on the membrane surface of cancerous cells; its
novel labelling on cancerous cell surface by anti-CRT con-
jugated AuNCs suggests that CRT translocates to the cell
surface during carcinogenesis, perhaps inducing immunoto-
lerance of the malignant cells among other functions. There
have been previous studies linking its association to various
cancers [47]. The mechanistic pathways involving CRT and
its role in cancer remain largely unknown, although there
have been studies about its role in immunogenic cell death.
Elucidation of the mechanisms by which cell-surface CRT
may facilitate cancerous cells’ evasion from immune cell
death, may allow its potential application as a theranostic
biomarker in the personalised treatment of various cancers
with CRT cell surface expression.

In conclusion, we have developed a simple synthesis
route for the production of high quality metal-based NCs
using NIR-emitting AuNCs as a probe and MSA as a coating
and stabiliser. Compared to most semiconductor-based
fluorophores, our approach to the synthesis of biostable,
aqueous noble metal NCs emitting in the NIR is simple,
economical, reproducible and environmentally friendly. The
AuNCs produced were further deployed to demonstrate the
universal presence of CRT on the cell surface of various
human solid cancer cell lines.
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The above findings blaze the path for the application of
NIR-emitting AuNCs as theranostic nanobioprobes in human
cancer and the use of CRT as a cancer biomarker; further
knowledge and exploitation of AuNCs quantum properties,
jointly with the yet to be fully elucidated CRT role as a
modulating factor in immune-mediated cancerous cell death
may facilitate the use of AuNC targeting of CRT in the per-
sonalised treatment of CRT cell surface-positive human
cancer, among others.
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